Convergence to time-periodic solutions in Hamilton-Jacobi equations on the circle

نویسندگان

  • Patrick BERNARD
  • Jean-Michel ROQUEJOFFRE
چکیده

. The goal of this paper is to give a simple proof of the convergence to timeperiodic states of the solutions of time-periodic Hamilton-Jacobi equations on the circle with convex Hamiltonian. Note that the period of limiting solutions may be greater than the period of the Hamiltonian. Resumé. . On donne une preuve simple de la convergence vers des états périodiques en temps pour les solutions d’équations de Hamilton-Jacobi sur le cercle avec un Hamiltonien convexe et périodique en temps. Il est à noter que la périodes des solutions limites peut être plus grande que la période du Hamiltonien.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence to time-periodic solutions in time-periodic Hamilton-Jacobi equations on the circle

. The goal of this paper is to give a simple proof of the convergence to timeperiodic states of the solutions of time-periodic Hamilton-Jacobi equations on the circle with convex Hamiltonian. Note that the period of limiting solutions may be greater than the period of the Hamiltonian. Resumé. . On donne une preuve simple de la convergence vers des états périodiques en temps pour les solutions d...

متن کامل

Large time behavior for some nonlinear degenerate parabolic equations

We study the asymptotic behavior of Lipschitz continuous solutions of nonlinear degenerate parabolic equations in the periodic setting. Our results apply to a large class of Hamilton-Jacobi-Bellman equations. Defining Σ as the set where the diffusion vanishes, i.e., where the equation is totally degenerate, we obtain the convergence when the equation is uniformly parabolic outside Σ and, on Σ, ...

متن کامل

On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations

In this article, we study the large time behavior of solutions of first-order Hamilton-Jacobi Equations, set in a bounded domain with nonlinear Neumann boundary conditions, including the case of dynamical boundary conditions. We establish general convergence results for viscosity solutions of these Cauchy-Neumann problems by using two fairly different methods : the first one relies only on part...

متن کامل

Hamilton-jacobi Equations with Partial Gradient and Application to Homogenization

The paper proves a new uniqueness result for viscosity solutions of the Dirichlet problem for Hamilton-Jacobi equations of the form H(x; u; D x 0 u) = 0 in ; u = g on @; where is an open subset or R n and D x 0 u is the partial gradient of the scalar function u with respect to the rst n 0 variables (n 0 n). The main theorem states that there is a viscosity solution of the equation which is uniq...

متن کامل

Asymptotic Solutions of Hamilton-Jacobi Equations with State Constraints

We study Hamilton-Jacobi equations in a bounded domain with the state constraint boundary condition. We establish a general convergence result for viscosity solutions of the Cauchy problem for Hamilton-Jacobi equations with the state constraint boundary condition to asymptotic solutions as time goes to infinity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003